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By common consent, the California Math Standards are among
the top three state standards in the nation.

Why should we adopt CCSS (Common Core State Standards

in mathematics)?

Because a set of standards is a very complex object. No matter
how good it is, there is always plenty of room for improvement.

Overall, the CCSS is short of perfect (of course), but it is much
better than what we have got.



I was asked by CCSSO for a quote, and here is what I said:

The Common Core mathematics standards succeed in being both
mathematically coherent and grade level appropriate. Overall,
they are the best standards that I have seen in the past twenty
years. If we can design a professional development program of
the same caliber to go with these standards, then our nation will
be making a substantial first step towards educational excellence
in mathematics.



Do I still stand by this statement? Yes and no.

Yes, there isn’t a word that I want to change.

No, because I wish I could have written more. I should have
added the following;

The choice of the right kind of assessment is also critically im-
portant for CCSS to work.



We need intensive professional development of our math teachers
and a rigorous assessment system in order to benefit from the
CCSS. No pain, no gain.

In this sense, we have to acquire some perspective on today’s
discussion:

To adopt or not to adopt, that is not the real issue. The real
issue is whether California has the resolve and the wisdom to
do good for its children, and commit to a long term process of
incremental improvement.



Professional development in mathematics requires immense fund-
ing and real expertise. At the moment we seem to have neither.
So we must be willing to work our way up from scratch.

State assessment in mathematics cannot afford to have too large
a gray area between right and wrong. State assessment should
test basic competence and must be as unambiguous as possible.
It should be a “driver’s test”: take it, forget it, and go on to
learn real mathematics.

For this reason, please do not go anywhere near so-called au-
thentic assessment.



But let me answer this question first: Is the CCSS worth all the
trouble?

Yes.

Do they match international expectations?

Definitely, with room to spare.



Here is one criterion commonly used to judge a set of standards:
Pick a topic and ask if it is taught in grade N. For example, is

algebra taught in grade 8?

To do this question justice, we must first ask: what is “algebra”?

If it is taken to mean “all the usual topics in Algebra I”, the
answer is NO for the CCSS. But it is also NO for the Japanese

curriculum, and Japan is one of the most revered nations in
mathematics education. The Japanese curriculum spreads the
Algebra I topics over grades 8–9, and the same can essentially
be said about CCSS.



By the way, the Pythagorean Theorem is a grade 7 topic in
California, but it is not taken up in Japan until grade 9.

Does this make California two grades better than Japan?

I let you decide.



Still with the question, “is algebra taught in grade 8?” What
is meant by “taught”?

If it means putting a collection of topics in that grade without
regard to whether students are prepared for them, then the an-
swer to the first question is YES for California, Massachusetts,
and Minnesota.

If it means carefully preparing the groundwork for algebra to
optimize students’ chance of achieving it, then I am afraid the
answer is NO for all three states.



CCSS does about half of the Algebra I topics in grade 8, but not
all the topics because, in order to properly preparing students for
algebra, it spends part of grade 8 on the preparation.

The twin pillars that support Algebra I are rational numbers

(i.e., fractions and negative fractions) and similar triangles

(congruence and similarity). See National Mathematics Advisory
Panel Report (2008).

CCSS gives precise mathematical guidance on how to develop
both topics in grades 5-8. The detailed description of the grade-
by-grade progressions of both topics is unprecedented.



These two topics, when done properly, give ample opportunity to
acclimatize students to precision and abstraction, two qualities
so essential to algebra.

However, the curriculum of grades 5–7 in all the state standards

allows the replacement of much of the precise reasoning
and abstraction in rational numbers by hands-on activi-
ties, picture-drawings, analogies, and metaphors, and

omits similarity.



Why similar triangles? A popular test item is: Given two points
in the coordinate plane, find the equation of the line passing
through these points.

This is a very simple problem if students know about similar
triangles. But at present students learn algebra without benefit
of similar triangles, so they learn about equations of straight lines
by rote, and they make mistakes.



This gap in the logical development of the

mathematics leading up to Algebra I was

explicitly pointed out on page 181 of the

Mathematics for California Public Schools

(2006 version). See lines 7–16.



In the CCSS, a sizable part of the standards in Grade 8 is de-
voted to the study of congruence and similarity,

emphasizing precise definitions and precise statements of
facts,

but avoiding a full-blown course on geometric proofs by also
emphasizing geometric intuition using hands-on activities
and verification by experiments.

The sole purpose of this excursion into geometry is to make
students feel comfortable applying the basic facts about similar
triangles (such as the AA criterion for similarity) so that they
can deal with the graph of a straight line.



Now look at the other pillar: rational numbers (fractions and
negative fractions). Fraction-phobia has been in full swing in
our country for decades. No corrective measure can afford to be
just business-as-usual. Let me illustrate.

How to add 7
8 + 5

6 ?

Take the Least Common Denominator of 8 and 6, which is 24.
Note that 24 = 3× 8 and 24 = 4× 6. Therefore

7

8
+

5

6
=

3× 7+ 4× 5

24
=

41

24



Did that make any sense to you?

Adding is supposed to “combine things”. Did you see any “com-
bining” in this procedural description of 7

8 + 5
6 ?

How is a child who has mastered adding whole numbers supposed
to learn this?



Here are the California standards on the addition of fractions:

Gr5 NS 2.0 Students perform calculations and solve problems
involving addition, subtraction, and simple multiplication and di-
vision of fractions and decimals:

2.3 Solve simple problems, including ones arising in con-
crete situations, involving the addition and subtraction of
fractions and mixed numbers (like and unlike denomina-
tors of 20 or less), and express answers in the simplest
form.



Gr6 NS 2.0 Students calculate and solve problems involving
addition, subtraction, multiplication, and division:

2.1 Solve problems involving addition, subtraction, mul-
tiplication, and division of positive fractions and explain
why a particular operation was used for a given situation.

There is nothing wrong with them, but it is business-as-usual.



Here is how CCSS approaches the addition of fractions:

Grade 3 Understand a fraction as a number on the num-
ber line; represent fractions on a number line diagram. Explain
equivalence of fractions in special cases.

First represent 1/n as the point next to 0 when [0,1] is
divided into n equal parts, then m/n is the m-th division
point to the right, and therefore, identifying 1/n with
[0,1/n], m/n with [0,m/n], m/n is

“m copies of 1/n”,
i.e., m/n is joining m copies of 1/n together.



Grade 4 Explain why a fraction a/b is equivalent to a fraction
(n×a)/(n×b) by using visual fraction models, with attention to
how the number and size of the parts differ even though the two
fractions themselves are the same size, i.e., same point on the
number line.

Define addition of fractions as joining parts referring to
the same whole. Then for two fractions with like denominators,
m/n + k/n = (m+k)/n.



Grade 5 Add and subtract fractions with unlike denominators
by replacing given fractions with equivalent fractions, so that we
have fractions with like denominators. For example, 2/3 + 5/4
= 8/12 + 15/12 = 23/12. (In general, a/b + c/d = (ad +
bc)/bd.)

Altogether, these standards guide students through three grades
to get them to know the meaning of adding fractions: Addition is
putting things together, even for fractions, and the development
ends with the formula a/b + c/d = (ad + bc)/bd. No mention
of LCD.



CCSS is full of delicate touches like this. It is hoped that CCSS
will induce wholesale improvement in classroom instructions in
California.

But we must not forget that only teachers who have the requisite
content knowledge can make such improvement happen.



The K–4 school math curriculum is quite concrete, but algebra
is on a higher level of abstraction. We depend on Grades 5–7 to
prepare students for algebra.
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To go from grade 5 to grade 8, one can gradually elevate the
level of sophistication to give students a smooth transition:
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What the California curriculum does: Keep the level from
grades 5 to 7 flat, and let students struggle in grade 8.
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We are setting students up for failure.


